chesterfredericktrue1693405512577systemFrederick ChesterFrederick M. Chester/people/profiles/faculty/chesterfrederickgeogeo.tamu.edusite://geogeo.tamu.edu/people/profiles/faculty/chesterfrederickmouchyn1534211966529n.garza961693071254972InSiteNavNo/images/people/chesterfrederick.jpgsite://geogeo.tamu.edu/images/people/chesterfrederick.jpggeogeo.tamu.educhesterfrederick.jpgchesterfrederick.jpg266682600800Professor and David Bullock Harris Chair in GeologyCo-Manager, John W. Handin Laboratory for Experimental Rock DeformationEarthquake physics, Experimental rock deformation, Structural geology, Tectonophysicschesterf@tamu.edu(979) 845-32969798453296Halbouty 53https://aggiemap.tamu.edu/?bldg=0490

Ph.D. Geophysics, Texas A&M University, 1988

M.S. Geology, Texas A&M University, 1983

B.A. Geology/Geophysics, University of California, Santa Barbara, 1980

Google Scholar: Frederick M. Chester

Center for Tectonophysics

Southern California Earthquake Center

My research focuses on fracture, faulting and friction in rock, physics of the earthquake source, creep and consolidation in porous granular materials, and semibrittle flow. I enjoy field work in structural geology, laboratory work in experimental rock deformation, and the design and fabrication of high-pressure rock deformation instruments.

  • Barbery, M. R., F. M. Chester, and J. S. Chester (2021), Characterizing the distribution of temperature and normal stress on flash heated granite surfaces at seismic slip rates. Journal of Geophysical Research: Solid Earth, 126, e2020JB021353. https://doi. org/10.1029/2020JB021353.

  • Ding*, J., F. M. Chester, and J. S. Chester (2021), Test of effective stress for semibrittle deformation using isostatic and triaxial load paths, Journal of Geophysical Research: Solid Earth, 126, e2020JB021326. https://doi.org/10.1029/2020JB021326.

  • Ding, J., F. M. Chester, J. S. Chester, X. Shen, and C. Arson (2021), Coupled brittle and viscous micromechanisms produce semibrittle flow, grain-boundary sliding, and anelasticity in salt-rock, Journal of Geophysical Research: Solid Earth, https://doi.org/10.1029/2020JB021261.
  • Shen, X., J. Ding, I. Lordkipanidze, C. Arson, J. S. Chester, F. M. Chester (2021), Fabric evolution and crack propagation in salt during consolidation and cyclic compression tests, Acta Geotech. https://doi.org/10.1007/s11440-020-01117-1..
  • Brodsky, E. E., J. J. Mori, L. Anderson, F. M. Chester, M. Conin, et al. (2020), The State of stress on the fault before, during, and after a major earthquake, Annual Review of Earth and Planetary Sciences, 48, 10.1146/annurev-earth-053018-060507.
  • Chester, F. M., and J. C. Moore (2018) Tectonostratigraphy and processes of frontal accretion with horst-graben subduction at the Japan Trench, in Byrne, T., et al., eds., Geology and Tectonics of Subduction Zones: A Tribute to Gaku Kimura: Geological Society of America Special Paper 534, p. 101–113, https://doi.org/10.1130/2018.2534(06).
  • Choens, R. C., and F. M. Chester (2018) Time-dependent consolidation in porous geomaterials at in situ conditions of temperature and pressure. Journal of Geophysical Research: Solid Earth, 123. https://doi.org/10.1029/2017JB015097.2018
  • Brodsky, E. E., D. Saffer, P. Fulton, F. Chester, M. Conin, K. Huffman, J. C. Moore, and H.-Y. Wu (2017), The postearthquake stress state on the Tohoku megathrust as constrained by reanalysis of the JFAST breakout data, Geophys. Res. Lett., 44, doi:10.1002/2017GL074027.
  • Luetkemeyer, P., D. L. Kirschner, K. W. Huntington, J. S. Chester, F. M. Chester, J. P. Evans (2016) Constraints on paleofluid sources using the clumped-isotope thermometry of veins from the SAFOD (San Andreas Fault Observatory at Depth) borehole, Tectonophysics, doi.org/10.1016/j.tecto.2016.05.024
  • French, M. E., F. M. Chester, J. S. Chester, and J. E. Wilson (2016), Stress-dependent transport properties of fractured arkosic sandstone, Geofluids, DOI: 10.1111/gfl.12174.
  • Saber, O., F. M. Chester, and J. L. Alvarado (2016), Development of a material-testing machine for study of friction: experimental analysis of machine dynamics and friction of rock, Experimental Mechanics, 56, 813-831, DOI: 10.1007/s11340-015-0125-y.
  • French, M. E., F. M. Chester, and J. S. Chester (2015), Micromechanisms of creep in clay-rich gouge from the Central Deforming Zone of the San Andreas fault, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2014JB011496
  • Chester, F.M., Rowe, C., Ujiie, K., Kirkpatrick, J., and C. Regalla, et al. (2013), Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-oki Earthquake. Science, 342(6163):1208–1211. doi:10.1126/science.1243719.
  • Kitajima, H., F.M. Chester, and G. Biscontin (2012), Mechanical and hydraulic properties of Nankai accretionary prism sediments: effect of stress path, Geochemistry, Geophysics, Geosystems (G3), doi:10.1029/2012GC004124.
  • Kitajima, H., J.S. Chester, F.M. Chester, and T. Shimamoto (2010), High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution, J. Geophys. Res., 115, B08408, doi:10.1029/2009JB007038.
  • Karner, S.L., A.K. Kronenberg, F.M. Chester, J.S. Chester, and A. Hajash, Jr. (2008), Hydrothermal deformation of granular quartz sand, J. Geophys. Res., 113, B05404, doi:10.1029/2006JB004710.
  • Chester, F.M., Chester, J.S., Kronenberg, A.K., and Hajash, A., Subcritical creep compaction of quartz sand at diagenetic conditions: Effects of water and grain size, J. Geophys. Res., 112, B06203, doi:10.1029/2006JB004317, 2007.
  • Chester, J.S., Chester, F.M., and Kronenberg, A.K., Fracture surface energy of the Punchbowl fault, San Andreas system, Nature, 437, 133-136, 2005.
  • Ramsey, J.M., and Chester, F.M., Hybrid fracture and the transition from extension fracture to shear fracture, Nature, 428, 63-66, 2004.
  • Chester, F.M., and J.S. Chester, Ultracataclasite structure and friction processes of the San Andreas fault, Tectonophysics, 295, 199-221, 1998.
  • Chester, F.M., J.P. Evans, and R.L. Biegel, Internal Structure and Weakening Mechanisms of the San Andreas Fault, J. Geophys. Res., 98, 771-786, 1993.
  • Chester, F.M., The brittle-ductile transition in a deformation-mechanism map for halite, Tectonophysics, 154, 125-136, 1988.
  • Chester, F. M., and J. M. Logan, Composite planar fabric of gouge from the Punchbowl fault, California, J. Struct. Geol., 9, 621-634, 1987.
  • Chester, F. M., and J. M. Logan, Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California, Pure Appl. Geophys., 124, 79-106, 1986.